python线性规划问题的处理步骤

2025-12-01 0 71,453

说明

1、问题定义,确定决策变量、目标函数和约束条件。

2、模型构建,由问题描述建立数学方程,转化为标准形式的数学模型。

3、模型求解,用标准模型的优化算法对模型进行求解,得到优化结果。

实例

不等式1为大于等于,应该转换为小于等于:-2X1 + 5X2 – X3 <= -10

import numpy as np
from scipy import optimize as op
np.set_printoptions(suppress=True)
z = np.array([2, 3, -5])
A_up = np.array([[-2, 5, -1], [1, 3, 1]])
B_up = np.array([-10, 12])
A_eq = np.array([1, 1, 1])
B_eq = np.array([7])
x1 = (0, 7)
x2 = (0, 7)
x3 = (0, 7)
res = op.linprog(-z, A_up, B_up, A_eq, B_eq, bounds=(x1, x2, x3))
print(res)

以上就是python线性规划问题的处理步骤,希望对大家有所帮助。更多Python学习指路:python基础教程

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:以上部本文内容由互联网用户自发贡献,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。投诉邮箱:3758217903@qq.com

ZhiUp资源网 python基础 python线性规划问题的处理步骤 https://www.zhiup.top/1000.html

相关