如何掌握python中的AdaBoost算法?

2025-12-01 0 92,010

如果说最像是盲人摸象的算法,不是不存在的,因为你看不懂算法里的大部分内容,重要还是因为她里面组合拼搭了很多的内容,最终目的还是为了对它自己组合出一个最强大的方法使用,这就是今天要跟大家教学了解的AdaBoost算法,这不仅仅是一个简单的算法,更是一个集成学习力非常有效的算法应用。赶快来了解吧~

Python实现AdaBoost算法

计算弱分类器误差

 pred_train = models[m].predict(x_train)
 miss = [int(x) for x in (pred_train != y_train)]
 error = np.dot(w, miss)

 计算弱分类器的权重

 theta[m] = 0.5 * np.log((1-error)/error)

更新数据权重

 for i in n_train:
 w[i] = w[i]*np.exp(-theta[m]*y_train[i]*pred_train[i])

正规化权重

 for i in n_train:
 w[i] /= np.sum(w[i])

最终的预测

predict = np.dot(theta, [model[m].predict(x_test) for m in range(M)])

直接给大家简单粗暴了演示在Python实现AdaBoost算法的一些代码示例,大家看下有没有自己或者之前想要找寻的呢?有的话,就多看两遍学习,加深印象哦~

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:以上部本文内容由互联网用户自发贡献,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。投诉邮箱:3758217903@qq.com

ZhiUp资源网 python基础 如何掌握python中的AdaBoost算法? https://www.zhiup.top/3535.html

相关