Python特征降维如何理解

2025-12-01 0 13,976

说明

1、PCA是最经典、最实用的降维技术,尤其在辅助图形识别中表现突出。

2、用来减少数据集的维度,同时保持数据集中对方差贡献特征。

保持低阶主成分,而忽略高阶成分,低阶成分往往能保留数据的最重要部分。

实例

from sklearn.feature_selection import VarianceThreshold
 
# 特征选择  VarianceThreshold删除低方差的特征(删除差别不大的特征)
var = VarianceThreshold(threshold=1.0)   # 将方差小于等于1.0的特征删除。 默认threshold=0.0
data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]])
 
print(data)
'''
[[0]
 [4]
 [1]]
'''

以上就是Python特征降维的理解,希望对大家有所帮助。更多Python学习指路:python基础教程

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:以上部本文内容由互联网用户自发贡献,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。投诉邮箱:3758217903@qq.com

ZhiUp资源网 python基础 Python特征降维如何理解 https://www.zhiup.top/916.html

相关