python热力图的原理实现

2025-12-01 0 72,343

在我们想要对不同变量进行判断的时候,会分析其中的之间的联系。这种理念同样也被用在实例生活中,最常见到的是做一个地理的热力图。很多人对画热力图的方法不是很清楚,我们可以先装好相关的工具,了解一些使用参数,然后在实例中进行画热力图的实例体验,下面就来看看具体的方法吧。

1.导入相关的packages

import seaborn as sns
%matplotlib inline
sns.set(font_scale=1.5)

2.参数

vmax:设置颜色带的值

vmin:设置颜色带的最小值

cmap:设置颜色带的色系

center:设置颜色带的分界线

annot:是否显示数值注释

fmt:format的缩写,设置数值的格式化形式

linewidths:控制每个小方格之间的间距

linecolor:控制分割线的颜色

cbar_kws:关于颜色带的设置

mask:传入布尔型矩阵,若为矩阵内为True,则热力图相应的位置的数据将会被屏蔽掉(常用在绘制相关系数矩阵图)

3.实例

Python生成heatmap比较简单,导入googlmap然后把经纬度plot在地图上就可以了。最后把heatmap生成为一个html文件,可以放大和缩小。

import gmplot             # plot the locations on google map
import numpy as np        # linear algebra
import pandas as pd       # data processing, CSV file I/O (e.g. pd.read_csv())
import matplotlib.pyplot as plt  # data visualization
import seaborn as sns       # data visualization
 
 
df = pd.read_csv("data.csv")
df = pd.DataFrame(df)
df_td = pd.read_csv("datacopy.csv")
df_td = pd.DataFrame(df_td)
# print df.dtypes
print (df.shape)
print (df_td.shape)
 
def plot_heat_map(data, number):
    latitude_array = data['INTPTLAT'].values
    latitude_list = latitude_array.tolist()
    print(latitude_list[0])
 
    Longitude_array = data['INTPTLONG'].values
    longitude_list = Longitude_array.tolist()
    print(longitude_list[0])
 
    # Initialize the map to the first location in the list
    gmap = gmplot.GoogleMapPlotter(latitude_list[0], longitude_list[0], 10)
 
    # gmap.scatter(latitude_list, longitude_list, edge_width=10)
    gmap.heatmap(latitude_list, longitude_list)
 
    # Write the map in an HTML file
    # gmap.draw('Paths_map.html')
    gmap.draw('{}_Paths_map.html'.format(number))
 
 
plot_heat_map(df,'4')

以上就是python热力图的原理实现,大家可以先跟着代码试验一下,看看是否能运行出相关的热力图,然后就其中的一些知识点进行学习。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:以上部本文内容由互联网用户自发贡献,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。投诉邮箱:3758217903@qq.com

ZhiUp资源网 python基础 python热力图的原理实现 https://www.zhiup.top/2603.html

相关